JOURNAL OF
APPLIED GENETICS
        
Impact factor'2009=1.324

Contents



Journal of Applied Genetics 43(1), 2002, pp. 1-17

Cucumber: A model angiosperm for mitochondrial transformation?

Michael J. HAVEY, Jason W. LILLY, Borut BOHANEC, Grzegorz BARTOSZEWSKI, Stefan MALEPSZY


Abstract: Plants possess three major genomes, carried in the chloroplast, mitochondrion, and nucleus. The chloroplast genomes of higher plants tend to be of similar sizes and structure. In contrast both the nuclear and mitochondrial genomes show great size differences, even among closely related species. The largest plant mitochondrial genomes exist in the genus Cucumis at 1500 to 2300 kilobases, over 100 times the sizes of the yeast or human mitochondrial genomes. Biochemical and molecular analyses have established that the huge Cucumis mitochondrial genomes are due to extensive duplication of short repetitive DNA motifs. The organellar genomes of almost all organisms are maternally transmitted and few methods exist to manipulate these important genomes. Although chloroplast transformation has been achieved, no routine method exists to transform the mitochondrial genome of higher plants. A mitochondrial-transformation system for a higher plant would allow geneticists to use reverse genetics to study mitochondrial gene expression and to establish the efficacy of engineered mitochondrial genes for the genetic improvement of the mitochondrial genome. Cucumber possesses three unique attributes that make it a potential model system for mitochondrial transformation of a higher plant. Firstly, its mitochondria show paternal transmission. Secondly, microspores possess relatively few, huge mitochondria. Finally, there exists in cucumber unique mitochondrial mutations conditioning strongly mosaic (msc) phenotypes. The msc phenotypes appear after regeneration of plants from cell culture and sort with specific rearranged and deleted regions in the mitochondrial genome. These mitochondrial deletions may be a useful genetic tool to develop selectable markers for mitochondrial transformation of higher plants.

Key words: chloroplast, organellar transmission, organelle genetics, selectable markers.

Correspondence: M.J. HAVEY, Agricultural Research Service, U.S. Department of Agriculture, Vegetable Crops Unit, and Dep. of Horticulture, 1575 Linden Dr., University of Wisconsin, Madison, WI 53706 USA

Full text article: